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Abstract Purpose:The risk of developing metastatic squamous cell carcinoma for patients with head and
neck squamous cell carcinoma (HNSCC) is very high. Because these patients are often heavy
tobacco users, they are also at risk for developing a second primary cancer, with squamous cell
carcinomaof the lung (LSCC) being themost common.The distinctionbetweena lungmetastasis
and a primary LSCC is currently based on certain clinical and histologic criteria, although the
accuracy of this approach remains in question.
Experimental Design: Gene expression patterns derived from 28 patients with HNSCC or
LSCC from a single center were analyzed using penalized discriminant analysis.Validation was
done on previously published data for 134 total subjects from four independent Affymetrix data
sets.
Results:We identified a panel of 10 genes (CXCL13, COL6A2, SFTPB, KRT14,TSPYL5,TMP3,
KLK10, MMP1, GAS1, and MYH2) that accurately distinguished these two tumor types. This
10-gene classifier was validated on122 subjects derived from four independent data sets and an
average accuracy of 96% was shown. Gene expression values were validated by quantitative
reverse transcription-PCR derived on 12 independent samples (seven HNSCC and five LSCC).
The10-gene classifier was alsoused to determine the site of originof12 lung lesions frompatients
with prior HNSCC.
Conclusions:The results suggest that penalized discriminant analysis using these 10 genes will
be highly accurate in determining the origin of squamous cell carcinomas in the lungs of patients
with previous head and neck malignancies.

Patients with head and neck squamous cell carcinoma
(HNSCC) are at high risk for the development of metastatic
carcinoma in the lung. Studies suggest that 5% to 15% of
patients with HNSCC develop lung metastases (1). However,

because patients with HNSCC are often heavy tobacco users,
they are also at risk for second primary cancers, with
squamous cell carcinoma of the lung (LSCC) being the most
common (2).
In some cases, the distinction between a lung metastasis and

a second primary lung carcinoma can be easily distinguished
on clinical grounds. The presence of multiple pulmonary
nodules is usually considered evidence of metastatic disease.
However, in subjects who present with a solitary lung nodule,
the distinction between metastasis and primary carcinoma can
be more problematic. Usually, patients with HNSCC who are
found to have solitary pulmonary lesions undergo surgery or
needle biopsy with pathologic evaluation. If the lung lesion is
also of squamous cell histology, the distinction between
metastasis and primary LSCC is extremely difficult. Currently,
this distinction is made by comparison of histologic grade or by
the presence of other premalignant changes in the respiratory
epithelium; however, the accuracy of this approach is unclear.
Making the correct diagnosis has practical importance for

choice of therapy. Although patients with either a primary
LSCC or a solitary HNSCC metastases may be eligible for
surgical resection, the choice of surgical procedure and the use
of adjuvant therapy is usually different in these situations.
Additionally, patients with early-stage LSCC have a significantly
better prognosis than patients with metastatic HNSCC.

Imaging, Diagnosis, Prognosis

Authors’Affiliations: 1University of Pennsylvania Medical Center and 2TheWistar
Institute, Philadelphia, Pennsylvania; 3Columbia University Medical Center and
4Memorial Sloan-Kettering Cancer Center, NewYork, NewYork; 5University of
Minnesota Medical Center, Minneapolis, Minnesota; 6University of North Carolina-
Chapel Hill, Chapel Hill, North Carolina; and 7University of Oxford, Oxford, United
Kingdom
Received 7/10/06; revised12/5/06; accepted 2/21/07.
Grant support: Pennsylvania Department of Health (PA DOH Commonwealth
Universal Research Enhancement Program),Tobacco Settlement grants ME01-740
(L.C. Showe) and SAP 4100020718 (L.C. Showe, S.M. Albelda), NSF RCN
0090286 (M.K. Showe), National Cancer Institute T32 CA09171, caBIG
subcontract 79522CBS10 (M. Nebozhyn), and National Cancer Institute K12
CA076931 (A.Vachani).
The costs of publication of this article were defrayed in part by the payment of page
charges.This article must therefore be hereby marked advertisement in accordance
with18 U.S.C. Section1734 solely to indicate this fact.
Note: Supplementary data for this article are available at Clinical Cancer Research
Online (http://clincancerres.aacrjournals.org/).
A.Vachani andM. Nebozhyn contributed equally to this work.
Requests for reprints: Louise C. Showe,TheWistar Institute, 3601Spruce Street,
Philadelphia, PA19104. E-mail: lshowe@wistar.upenn.edu.

F2007 American Association for Cancer Research.
doi:10.1158/1078-0432.CCR-06-1670

www.aacrjournals.org Clin Cancer Res 2007;13(10) May15, 20072905



Recent gene expression studies have shown the potential to
classify the origin of human carcinoma cell lines (3) and
human tumors (4, 5). We have compared HNSCC and LSCC
tumors using gene expression profiling with the goal of
identifying a small number of differentially expressed genes
that could ultimately prove useful and practical in distinguish-
ing primary lung cancer from HNSCC metastases to the lung.
Using a training set/validation set approach, we show that
penalized discriminant analysis (PDA) can correctly classify
patients with HNSCC and LSCC with high accuracy using a
discriminant model with as few as 10 genes. The gene
expression results were further validated by quantitative reverse
transcription-PCR (QRT-PCR) data derived from 12 indepen-
dent samples for 19 genes. Our classification algorithm also
correctly classified a set of 12 squamous lung lesions of
undetermined origin from patients with prior HNSCC.

Materials andMethods

Patient characteristics and tissue acquisition from the University of

Pennsylvania. Primary LSCC tumors were obtained from a tissue bank
at the Thoracic Oncology Research Laboratory at the University of
Pennsylvania. Lung cancer patients in this study presented to the
University of Pennsylvania between 1993 and 2000 and underwent a
lobectomy for resection of LSCC. These patients had a confirmed
pathologic diagnosis of squamous cell carcinoma and had not received
any prior cancer therapy. Clinical data was acquired via retrospective
chart review. HNSCC patients in this study were obtained from a Head
and Neck Carcinoma Tissue Bank and underwent surgical resection at
the University of Pennsylvania between 1998 and 2002 (6). Tissue
acquisition was approved by the institutional review board at the
University of Pennsylvania.

Intraoperative tumor samples were routinely dissected from sur-
rounding normal tissue, but no microdissection was done. H&E
staining was done to verify the presence of >70% tumor cells. Samples
were immediately frozen in liquid nitrogen before RNA extraction.

RNA preparation, target preparation, and hybridization. RNA was
extracted from the tumor specimens as previously described (7). All
hybridization protocols were conducted as described in the Affymetrix
GeneChip Expression Analysis Technical Manual at the University of
Pennsylvania Microarray Core. RNA was hybridized to Affymetrix
U133A GeneChips (Affymetrix) using standard conditions in an
Affymetrix fluidics station.

External data sources. Gene expression profiling data of HNSCC
and LSCC tumor samples were provided by four external sources. The
samples were analyzed on two different Affymetrix chips—U133A and
U95Av2. U133A data included 41 HNSCC samples from the University
of Minnesota (8). U95Av2 data sets included 11 LSCC samples from
Columbia University (9, 10), 21 LSCC samples from the Dana-Farber
Cancer Institute (11), and 49 samples (18 LSCC, 31 HNSCC) from
Memorial Sloan-Kettering Cancer Center (12). U95Av2 data from 12
squamous cell lung lesions from patients with previous HNSCC were
also provided by Memorial Sloan-Kettering Cancer Center (12). The
Dana-Farber Cancer Institute data is available online.8 All other
published data was kindly provided by investigators at the individual
institutions. Patient characteristics and details of tissue acquisition,
RNA isolation, and array hybridization have been previously described
for these four data sets.

Identifying U95Av2 and U133A common genes. Common genes
were linked between the two chip types using Affymetrix probe set

identifiers. Probe sets that were common between the two different
platforms (U95Av2 versus U133A) were aligned using the ‘‘best match’’
file.9 This spreadsheet identifies the probe sets from the two platforms
that are most similar based on several factors, including target sequence
match and percentage identity. A total of 9,530 probe sets were
overlapping between U95Av2 and U133A.

Microarray normalization. The CEL files for each data set were
reprocessed using a publicly available implementation of Robust
Multichip Average expression summary (RMAExpress) Version 0.3
(13). Default settings were used for background adjustment, quantile
normalization, and log 2 transformation. Samples from the different
institutions were processed as independent groups.

Distance weighted discrimination. The distance weighted discrimi-
nation (DWD) method is a generalization of the support vector
machine, a multivariate technique (14). DWD has been previously
shown to be well suited for correction of the systematic biases
associated with micro array data sets (15). DWD performance and
robust quantification of systematic bias has been reported to be
superior to that of classic methods (such as principal component
analysis, linear discriminant analysis, and standard linear support
vector machine). A detailed description of DWD is given in ref. (16).
The DWD calculations were carried out using a Java-based version of
DWD method.10 The following settings were used for the input
variables: (a) DWD type, nonstandardized DWD, and (b) mean
adjustment type, centered at the second mean.

Hierarchical clustering. Hierarchical clustering was done using the
Pearson correlation distance metric and Ward’s linkage. For visual
enhancement of Figs. 1 and 2 (showing the results of biclustering of
samples and the selected genes), the clustering was carried out after the
values for each gene were converted to z scores by subtracting the
corresponding gene mean that was computed over all samples being
clustered, and dividing by the corresponding SD. Additionally, to keep
figure space as compact as possible, the relative length of the main stem
that partitions the clustered samples into two main subclusters has been
reduced 5-fold in Fig. 3A and B, depicting clustering of samples before
and after DWD transformation.

Selection of biomarkers. Identification of genes that were differen-
tially expressed between HNSCC and LSCC was first carried out by
multivariate PDA (17, 18). PDA is an extension of classic Fisher linear
discriminant analysis (19) applied to problems where the number of
covariates (genes) exceeds the number of observations (samples) in the
training set (17, 18).

PDA with recursive feature elimination. The genes that contribute
the most to the classification model were selected as follows: f30% of
the genes least differentially expressed between HNSCC and LSCC data
sets were first eliminated based on the P values from a univariate t test.
A progressive scheme of gene reduction is then applied and the least
informative genes (usually from 1% to 10%) are removed iteratively.
This process is repeated until only one gene remains. A discriminant
model is fitted at each reduction and each gene is assigned a computed
‘‘predictive power’’ (discriminant weight � SD), which estimates the
contribution of that gene to the discriminant score. The discriminant
scores (either positive or negative) define which of the two experimen-
tal classes a particular sample belongs and how well each sample is
classified.

Resampling procedure. To evaluate the robustness of our classifier
and to estimate the confidence intervals for the classification scores
for each sample in the independent validation set, PDA with recursive
feature elimination was carried out on 100 subsets of the University
of Pennsylvania training set and applied to classify the validation
samples. The 100 training subsets were generated by random
resampling without replacement (jackknifing) from 28 samples in
the University of Pennsylvania data set. Each subset contained 90% of

8 http://research.dfci.harvard.edu/meyersonlab/lungca/

9 http://www.affymetrix.com/support/technical/comparison___spreadsheets.affx
10 https://genome.unc.edu/pubsup/dwd
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Fig. 1. Hierarchical clustering of the
University of Pennsylvania HNSCC and
LSCC samples using the top100 probe sets
(representing 99 unique genes) that were
identified by PDAwith recursive feature
elimination as described in Materials and
Methods.The PDAwas trained to distinguish
between18 HNSCC and10 primary LSCC
samples from the University of Pennsylvania
data set (the training set).The genes were
selected using the 9,530 probe sets
common to U95Av2 and U133A chips. Heat
map, rescaled gene expression values for
each of the samples and probe sets.
For each probe set, the values in the blue
range of spectrum correspond to low values
and red correspond to high values, relative to
the mean expression each probe set, as
indicated on the color bar (upper right
corner). Columns from left to right, gene
rank, P value, fold change, and gene symbol.
Yellow,10 top-ranked genes.
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the 28 original samples, with the same proportion of LSCC and
HNSCC.

Quantitative real-time PCR. Gene-specific primers (IDT, Inc.) were
designed with the Light Cycler Probe Design Software, Version 1.0
(Idaho Technology, Inc.), and ABI PRISM PrimerExpress software,
Version 2.0 (Applied Biosystems, Inc.). Primers were selected from the
3¶ half of the message using sequence retrieved from the Genbank
database and in almost all cases from different exons. The PCR
reaction was done in 20 AL as previously described (20) using the
Chromo4 PTC-200 Peltier Thermal Cycler (MJ Research). All primers
were designed to have a melting temperature of f60jC. The PCR cycle
variables were as follows: 95jC 3 min hot start, 40 cycles of 95jC 20 s,
60jC 10 s, 72jC 20 s, and 78jC 5 s (to ensure elimination of side
product). SYBR green I fluorescence intensity was measured at the end
of each 72jC extension as previously described (20). Results were
normalized to GAPDH as the housekeeping gene and values were
calculated relative to a standard curve generated using the Stratagene
universal standard RNA, which had been supplemented with RNA
from the Jar and HT3 epithelial cell lines. The same standard RNA
mixture was used for all comparisons. Product specificity was assessed
by melting curve analysis and selected samples were run on 2%
agarose gels for size assessment. Quality of real-time PCR was
determined in two ways: the amplification efficiencies had to be
100 F 10%, and correlation coefficients (r2) >95%. The cDNA for PCR
amplification were prepared from 0.5 Ag of the amplified RNA using
Superscript II as previously described. The amplified RNA was
generated from 250 ng of total RNA subjected to one round of linear
amplification using the RiboAmp RNA Amplification Kit (Arcturus,
Inc.). Some samples were also assayed from cDNA prepared from total
RNA with similar results.

Results

Clinical characteristics of the University of Pennsylvania
training set cohort. Twenty-eight patients that underwent
surgical resection for their primary HNSCC or LSCC were
evaluated. The clinical characteristics of these patients are
presented in Table 1. In general, the two groups of patients were
similar in age, gender, and racial distribution. Clinical data on
all 28 subjects was collected via retrospective chart reviews and
in certain cases by telephone interview. None of the LSCC

patients had a previous history of HNSCC cancer and none
developed evidence of HNSCC during a minimum of 5 years of
clinical follow-up. Thus, all 10 were judged to have true
primary squamous cell carcinoma of the lung.

Training set analysis. We analyzed the 28 patient samples in
the University of Pennsylvania training set (18 HNSCC, 10
LSCC) using PDA with recursive feature elimination to identify
genes with the highest power to correctly distinguish patients
with LSCC from those with HNSCC. Our previous experience
had shown that genes selected by PDA did better as classifiers
than genes selected by t test when applied to a new set of
validation samples (20). We trained the PDA program on the
10 LSCC and 18 HNSCC samples from University of
Pennsylvania using the 9,530 probe sets representing the
overlap between the U95Av2 and U133A arrays. Hierarchical
clustering using the top 100 probe sets identified by PDA/
recursive feature elimination is shown in Fig. 1. All the samples
were correctly separated into the two different phenotypic
groups. The top 10 ranked genes are highlighted in yellow.
Table 2 lists the 100 genes most significantly differentially
expressed between the two patient groups.

Merging the data in the four independent data sets used for
validation. We next sought to test the accuracy of the
differentially expressed genes identified by PDA on previously
published data for independent sets of samples obtained from
Memorial Sloan-Kettering Cancer Center, Dana-Farber Cancer
Institute, University of Minnesota, and Columbia University.
We first evaluated systematic biases in the data sets that might
be due to source (where the samples were isolated and
processed) or to the array platform used (U95Av2 or U133A).
When we tested the University of Pennsylvania data set by
hierarchical clustering using the 9,530 overlapping genes, we
got a perfect separation by phenotype as expected for these
different tumor types (Supplementary Fig. S1). We then applied
unsupervised hierarchical clustering using the 9,530 common
genes to all 150 samples (including those from University of

Fig. 2. Unsupervised hierarchical clustering of all 150 samples using the 9,530
overlapping genes representing ‘‘perfect match’’probe sets common between
U95Av2 and U133A chips (analyzed byWard’s linkage and Pearson
correlation ^ based distance metric). A, samples clustered first according to
Affymetrix chip (U95Av2 versus U133A) used and then according to the source of
the data [University of Pennsylvania (UP), Dana-Farber Cancer Institute (DF),
Memorial Sloan-Kettering Cancer Center (SK), University of Minnesota (MN),
Columbia University (CU)]. B, clustering results after systematic bias adjustment
with DWD. Samples now cluster according to tumor type, and no subclustering by
Affymetrix chip type is observed.

Fig. 3. Accuracy of the PDA classifier on the independent test set after systematic
bias correction by DWD. Sensitivity, specificity, and the mean accuracy are given
as a function of the number of genes used by the linear discriminant function
throughout recursive feature elimination. Further details are given in Materials and
Methods. Data are shown for the top100 genes. For >100 genes, the sensitivity,
specificity, and the mean accuracy were essentially the same.There is a small but
not significant reduction in accuracy around 40 genes; however, the accuracy is
essentially unchanged between100 and 5 genes.
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Pennsylvania). As shown in Fig. 2A, rather than clustering by
tumor type, the samples clustered first according to the
Affymetrix chip (U95Av2 versus U133A) used for the study
and then according to the source of the data (University of
Pennsylvania, Dana-Farber Cancer Institute, Memorial Sloan-
Kettering Cancer Center, University of Minnesota, and Colum-
bia University). To minimize the artificial variability due to
different institutions and chip versions, we applied DWD.
DWD is designed to correct the systematic bias in one data set
at a time, and in our case several data sets with multiple biases
due to the data source and the chip used for hybridization (15).
The DWD correction was carried out in the following order but
the results were essentially the same regardless of the order in
which the data were merged. First, the 41 HNSCC samples in
the University of Minnesota data set were merged with the 18
HNSCC samples from University of Pennsylvania (both on
U133A). The 11 LSCC samples from Columbia University were
then merged with the 10 University of Pennsylvania LSCC
samples (U95Av2 and U133A, respectively). The 21 Dana-
Farber Cancer Institute LSCC samples were also merged with
the 10 LSCC University of Pennsylvania samples. Finally, the
two data sets with values for both HNSCC and LSCC, those
from Memorial Sloan-Kettering Cancer Center and the Univer-
sity of Pennsylvania, were merged. Hierarchical clustering done
after DWD correction is shown in Fig. 2B. All 150 samples now
clustered according to their tumor type and no subclustering by
chip type or location is observed.

Validation of the discriminant model on the independent test
set. The discriminant model using the genes identified by PDA
with recursive feature elimination on University of Pennsylvania

training set was then applied to classify 72 HNSCC and 50 LSCC
samples in the DWD adjusted validation cohort. The observed
accuracy of classification as a function of the total number of genes
retained in the discriminant model is shown in Fig. 3. Values are
shown for classifiers ranging from 1 to 100 genes. There is little
change in accuracy between 100 and 5 genes. Because the
classification accuracies were essentially the same with 5 or 10
genes, we used the 10 genes in further tests to accommodate
greater heterogeneity that may exist in a larger sample set. Using
this 10-gene classifier, the measurements of average accuracy,
sensitivity, and specificity were each calculated to be 96%.
Therefore, 10 genes are sufficient to robustly discriminate the
HNSCC samples from LSCC samples in the validation set.
In applying the 10-gene classifier, each sample in the

validation set is given a discriminant score that is a measure
of how well it is classified. The discriminant scores for each
individual subject in the validation cohort are shown in Fig. 4.
Of the 122 total samples, only five samples were misclassified,
three samples were LSCC, and two samples were HNSCC. Two
of the misclassified LSCC samples were considered to be
borderline cases. These samples had a low predictive score,
shown by the low column height in Fig. 4, and error bars that
cross the zero line separating the two classes. The 10 genes used
for this classification include chemokine ligand 13 (CXCL13);
collagen, type VI, a2 (COL6A2); surfactant protein B (SFTPB);
keratin 14 (KRT14); TSPY-like 5 (TSPYL5); tropomyosin 3
(TMP3); kallikrein 10 (KLK10); matrix metalloproteinase 1
(MMP1); growth arrest-specific 1(GAS1); and myosin, heavy
polypeptide 2, skeletal muscle, adult (MYH2). These are
highlighted in yellow on the tree view in Fig. 2.

Validation of selected gene expressions. The gene expression
values determined for the University of Pennsylvania array data
set were confirmed using twomethods. First, the gene expression
ratios (HNSCC/LSCC) of 19 genes were compared with the
ratios obtained for the same genes in the Memorial Sloan-
Kettering Cancer Center data set, the only other data set that
included samples from both tumor types. As seen in Table 3,
there is a very high level of agreement between the University of
Pennsylvania and Memorial Sloan-Kettering Cancer Center data
sets. Second, QRT-PCR on samples derived from a new group of
seven HNSCC subjects and five LSCC subjects enrolled at
University of Pennsylvania and not previously analyzed on
microarrays was used to confirm gene expression ratios
determined by microarrays on these 19 genes. These new
samples provided a second validation set for testing the classifier.
Only one of the 19 genes selected had an expression ratio that did
not agree among the three data sets—COL6A2 had higher
expression in HNSCC compared with LSCC in the University of
Pennsylvania array study and by QRT-PCR, whereas its
expression in HNSCC was slightly lower in the Memorial
Sloan-Kettering Cancer Center data set.

Diagnostic accuracy of gene expression ratios by RTQ-
PCR. The QRT-PCR data was used to generate gene expression
ratios (nine HNSCC, seven LSCC) using the method of Gordon
et al. (21). This method relies on the selection of gene pairs that
are highly differentially expressed between the two patient
classes. Briefly, the expression values for genes found to be
expressed at significantly higher levels in HNSCC were divided
by the gene expression values of genes expressed at high levels
in LSCC but much lower levels in HNSCC. The diagnostic
accuracies of the 10 best performing ratios for 12 samples (nine

Table 1. Patient characteristics (University of
Pennsylvania subjects)

Variable HNSCC (n = 18) LSCC (n = 10)

Age, y, mean (SD) 61 62
Gender (%)
Male 78 80
Female 22 20

Race (%)
White 83 90
Black 11 10
Other 6 0

Pathologic T stage (%)
T1 11 30
T2 28 30
T3 17 10
T4 44 30

Pathologic N stage (%)
N0 39 80
N1 11 20
N2 50 0

Histologic grade (%)
1 5 0
2 56 70
3 39 30

Tumor site (%)
FOM/buccal/tonsil 22 NA
Gingiva 6 NA
Larynx 0 NA
Mandible 11 NA
Tongue 61 NA

Abbreviations: FOM, floor of mouth; NA, not available.
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HNSCC, seven LSCC) are presented in Fig. 5. All nine of these
gene ratios accurately separated the two tumor types with
differences approaching 1,000-fold in some cases.

Classification of lung squamous cell tumors of undetermined
origin in patients with previous HNSCC. Having identified a
10-gene classifier with high accuracy for distinguishing between
primary lung carcinoma from head and neck carcinomas, we
then asked whether our algorithm would be similarly accurate

in the classification of 12 squamous cell lung tumors resected
from 12 patients previously treated for primary HNSCC.
Classification of these samples using a 500-gene classifier that
discriminated HNSCC from LSCC was reported previously
(12). Although these samples could not definitively be
distinguished as lung primaries or lung metastases, based on
pathologic and clinical criteria most of the lesions were
suspected to be of lung origin (12). When our 10-gene classifier

Table 2. One hundred most differentially expressed genes (by PDA)

Gene symbol Gene title UniGene ID PDA rank Mean ratio

CXCL13 Chemokine (C-X-C motif) ligand 13 Hs.100431 1 +2.3
COL6A2 Collagen, type VI, a 2 Hs.420269 2 +4.0
SFTPB Surfactant, pulmonary-associated protein B Hs.512690 3 -35.3
KRT14 Keratin 14 Hs.355214 4 +62.3
TSPYL5 TSPY-like 5 Hs.173094 5 -4.6
TPM3 Tropomyosin 3 Hs.146070 6 +2.9
KLK10 Kallikrein 10 Hs.275464 7 +5.0
MMP1 Matrix metalloproteinase 1 Hs.83169 8 +12.4
GAS1 Growth arrest-specific 1 Hs.65029 9 +3.1
MYH2 Myosin, heavy polypeptide 2, skeletal muscle, adult Hs.513941 10 +5.8
TRIM22 Tripartite motif-containing 22 Hs.501778 11 +5.3
SERPINB2 Serine (or cysteine) proteinase inhibitor,

clade B (ovalbumin), member 2
Hs.514913 12 +5.7

HBB Hemoglobin, h Hs.523443 13 -3.4
SCGB1A1 Secretoglobin, family 1A, member 1 (uteroglobin) Hs.523732 14 -8.8
HLA-DPA1 MHC, class II, DP a 1 Hs.347270 15 +2.2
MUC5B Mucin 5, subtype B, tracheobronchial Hs.523395 16 -1.8
IGFBP3 Insulin-like growth factor binding protein 3 Hs.450230 17 -1.8
LGALS7 Lectin, galactoside-binding, soluble, 7 (galectin 7) Hs.99923 18 +6.4
KRT19 Keratin 19 Hs.514167 19 -10.8
MMP3 Matrix metalloproteinase 3 Hs.375129 20 +8.2
LEPR Leptin receptor Hs.23581 21 +1.7
PTGIS Prostaglandin I2 (prostacyclin) synthase Hs.302085 22 -1.8
LDB3 LIM domain binding 3 Hs.49998 23 +1.9
NEFL Neurofilament, light polypeptide 68 kDa Hs.521461 24 +1.8
TDO2 Tryptophan 2,3-dioxygenase Hs.183671 25 +1.6
SERPINB1 Serine (or cysteine) proteinase inhibitor,

clade B (ovalbumin), member 1
Hs.381167 26 +3.2

HBB Hemoglobin, h Hs.523443 27 -4.0
COL1A2 Collagen, type I, a2 Hs.489142 28 +3.6
SFTPD Surfactant, pulmonary-associated protein D Hs.253495 29 -5.3
GAGE1 G antigen 1 Hs.278606 30 -4.9
COL10A1 Collagen, type X, a1 (Schmid metaphyseal chondrodysplasia) Hs.520339 31 +1.8
APOC1 Apolipoprotein C-I Hs.110675 32 -2.0
NTS Neurotensin Hs.80962 33 -6.6
CAV2 Caveolin 2 Hs.212332 34 +3.9
SERPINB3 Serine (or cysteine) proteinase inhibitor,

clade B (ovalbumin), member 3
Hs.227948 35 +3.5

PI3 Protease inhibitor 3, skin-derived (SKALP) Hs.112341 36 +9.3
ANK3 Ankyrin 3, node of Ranvier (ankyrin G) Hs.499725 37 +1.8
CXADR Coxsackie virus and adenovirus receptor Hs.473417 38 -1.5
LYZ Lysozyme (renal amyloidosis) Hs.524579 39 +2.6
YWHAZ Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase

activation protein, ~ polypeptide
Hs.492407 40 +3.2

SERPINA1 Serine (or cysteine) proteinase inhibitor, clade A
(a-1 antiproteinase, antitrypsin), member 1

Hs.525557 41 -3.2

CXCL12 Chemokine (C-X-C motif) ligand 12 Hs.522891 42 +1.8
COL3A1 Collagen, type III, a1 Hs.443625 43 +2.8
GAGE5 G antigen 5 Hs.278606 44 -4.3
FN1 Fibronectin 1 Hs.203717 45 +2.1
GAGE2 G antigen 2 Hs.278606 46 -4.3
TncRNA Trophoblast-derived noncoding RNA Hs.523789 47 +3.2
ANXA8 Annexin A8 Hs.463110 48 +2.8

NOTE: PDA rank is the order in which the given gene was eliminated during the course of recursive feature elimination. Mean ratio is ratio of
mean gene expression ratio in one group versus the other. A positive ratio corresponds to higher expression in HNSCC and a negative ratio
corresponds to higher expression in LSCC.
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was tested on these 12 samples, the majority (U01 through
U11) had strong negative classification scores, identifying them
as primary lung carcinomas as was suspected (Fig. 6; ref. 12).
Sample U12, which was clinically thought to be a lung
metastasis based on the development of an additional
pancreatic metastasis in the patient, is classified as HNSCC
supporting the clinical impression. Sample U13, which is the
pancreatic metastasis from the same patient as U12, is also

classified as HNSCC, although not as robustly, suggesting it
retains the HNSCC gene signature.

Discussion

Relevance. The finding of a solitary pulmonary lesion of
squamous cell histology in a patient with HNSCC can represent
either a metastasis, or more likely, a primary lung tumor (22).

Table 2. One hundred most differentially expressed genes (by PDA) (Cont’d)

Gene symbol Gene title UniGene ID PDA rank Mean ratio

COL6A3 Collagen, type VI, a3 Hs.233240 49 +2.7
SFTPC Surfactant, pulmonary-associated protein C Hs.1074 50 -6.4
THBS4 Thrombospondin 4 Hs.211426 51 +2.5
IL1R2 Interleukin 1 receptor, type II Hs.25333 52 +3.1
ACTA1 Actin, a1, skeletal muscle Hs.1288 53 +9.9
KRT1 Keratin 1 (epidermolytic hyperkeratosis) Hs.80828 54 +3.6
PTHLH Parathyroid hormone-like hormone Hs.89626 55 +3.1
TKTL1 Transketolase-like 1 Hs.102866 56 -1.5
IFI44 IFN-induced protein 44 Hs.82316 57 +6.7
CAV1 Caveolin 1, caveolae protein, 22 kDa Hs.74034 58 +3.8
CTGF Connective tissue growth factor Hs.410037 59 +2.0
CDH1 Cadherin 1, type 1, E-cadherin (epithelial) Hs.461086 60 +1.8
GAGE2 G antigen 2 Hs.278606 61 -3.9
ME1 Malic enzyme 1, NADP(+)-dependent, cytosolic Hs.21160 62 +1.7
FHL1 Four and a half LIM domains 1 Hs.435369 63 +2.8
MMP10 Matrix metalloproteinase 10 Hs.2258 64 +2.6
PTPRZ1 Protein tyrosine phosphatase, receptor-type,

Z polypeptide 1
Hs.489824 65 +3.2

ABCA3 ATP-binding cassette, subfamily A (ABC1), member 3 Hs.26630 66 -4.0
RARRES2 Retinoic acid receptor responder (tazarotene induced) 2 Hs.521286 67 -1.7
POSTN Periostin, osteoblast specific factor Hs.136348 68 +3.6
GCLM Glutamate-cysteine ligase, modifier subunit Hs.315562 69 +1.9
DSG3 Desmoglein 3 (pemphigus vulgaris antigen) Hs.1925 70 +8.1
CSRP3 Cysteine and glycine-rich protein 3 (cardiac LIM protein) Hs.83577 71 +5.4
NID Nidogen (enactin) Hs.356624 72 +2.4
PHLDA2 Pleckstrin homology-like domain, family A, member 2 Hs.154036 73 +2.1
TNC Tenascin C (hexabrachion) Hs.143250 74 +3.7
KLK13 Kallikrein 13 Hs.165296 75 +2.7
IGFBP2 Insulin-like growth factor binding protein 2, 36 kDa Hs.438102 76 -2.7
PLEC1 Plectin 1, intermediate filament binding

protein 500 kDa
Hs.434248 77 +1.4

SFRP4 Secreted frizzled-related protein 4 Hs.105700 78 +1.5
CMKOR1 chemokine orphan receptor 1 Hs.471751 79 +1.6
C4BPA Complement component 4 binding protein, a Hs.1012 80 -3.6
SFRP1 Secreted frizzled-related protein 1 Hs.213424 81 +2.3
CYR61 Cysteine-rich, angiogenic inducer, 61 Hs.8867 82 +1.7
C14orf109 Chromosome 14 open reading frame 109 Hs.275352 83 +1.8
PYGL Phosphorylase, glycogen; liver (Hers disease,

glycogen storage disease type VI)
Hs.282417 84 +3.6

FGFBP1 Fibroblast growth factor binding protein 1 Hs.1690 85 +3.6
TPM2 Tropomyosin 2 (h) Hs.300772 86 +4.5
WNT5A Wingless-type MMTV integration site family, member 5A Hs.152213 87 +3.5
SERPINB4 Serine (or cysteine) proteinase inhibitor,

clade B (ovalbumin), member 4
Hs.123035 88 +3.3

GAGE4 G antigen 4 Hs.278606 89 -3.8
KRT18 Keratin 18 Hs.406013 90 -3.9
EDNRA Endothelin receptor type A Hs.183713 91 +1.6
RGS1 Regulator of G-protein signaling 1 Hs.75256 92 +2.7
CTSH Cathepsin H Hs.148641 93 -1.9
WSB1 WD repeat and SOCS box-containing 1 Hs.446017 94 +2.1
LUM Lumican Hs.406475 95 +3.1
S100A7 S100 calcium binding protein A7 (psoriasin 1) Hs.112408 96 +53.6
CXCL6 Chemokine (C-X-C motif) ligand 6

(granulocyte chemotactic protein 2)
Hs.164021 97 -1.6

MYL1 Myosin, light polypeptide 1, alkali; skeletal, fast Hs.187338 98 +5.7
CCND2 Cyclin D2 Hs.376071 99 +1.8
SQLE Squalene epoxidase Hs.71465 100 +2.1

Ten-Gene Classifier for Squamous Cell Carcinoma

www.aacrjournals.org Clin Cancer Res 2007;13(10) May15, 20072911



Currently, various clinical criteria are used to distinguish
between these two entities. When the two lesions are of similar
histologic appearance, the lung nodule is assumed to be
metastatic. The presence of malignant adenopathy in the
anterior triangle of the neck at the time of diagnosis of
the lung lesion also suggests pulmonary metastases. Finally, the
presence of a lung lesion within 3 years of the HNSCC also
makes metastases more likely.
It is important to differentiate between these possibilities

because the prognosis and treatment of a primary versus
metastatic lesion are different. Studies have shown that the
surgical approach for a primary LSCC should be a lobectomy
compared with a lesser resection (23), whereas the goal of
resection in pulmonary metastases is to remove all gross tumor
while preserving as much normal parenchyma as possible. This
can usually be achieved via a wedge resection. Additionally, the
role of lymph node dissection, which is standard for primary
lung cancer resection, is not well defined in pulmonary
metastasectomy (24). The choice of adjuvant therapy is also
affected—platinum-based chemotherapy is now frequently
used for primary lung cancer, whereas its role after metastasec-
tomy has not been studied. Finally, the 5-year survival of early-
stage lung cancer after lobectomy approaches 80%, but is much
lower in patients with metastatic disease (25).
Recent studies suggest that the use of genetic abnormalities

can help with the distinction between primary LSCC and
metastasis. Leong et al. (26) compared tumors from 16 patients
with HNSCC and a paired solitary lung nodule for loss of

heterozygosity on chromosomal arms 3p and 9p. The use of
loss of heterozygosity distinguished 13 of the 16 cases as
primary lung cancer or metastasis based on discordant versus
concordant allelic patterns between the index tumor and the
lung lesion. Of the top 100 genes in our study, only two
(WNT5A, TPM2) are located on one of these chromosomal
arms. This is not surprising as both 3p and 9p are frequently
lost in both HNSCC and LSCC and would therefore be less
likely to lead to identification of differentially expressed genes
in these two tumor types.
A separate study using loss of heterozygosity suggests that

many squamous lung lesions in patients with HNSCC that are
currently classified as metastases based on clinical criteria may
in fact be primary lung cancers (27). Although loss of
heterozygosity is potentially useful, this technique is time
consuming, not widely available, not completely accurate, and,
most importantly, requires appropriate tissue from both the
primary and the lung lesion.

Comparison with other studies. Although a number of
studies have been published examining gene profiles in
HNSCC (8, 28) and LSCC (9) with their tissues of origin, to
our knowledge, the patterns in these two types of tumors have
only been compared in one previous study (12). Talbot et al.
used gene expression profiling to compare 21 lung cancer and
31 tongue cancer samples and were able to distinguish between
HNSCC and LSCC tumors using hierarchical clustering with
100 to 500 genes. The accuracy of their predictions decreased
when the number of genes was reduced below 100. An

Fig. 4. Discriminant scores assigned to122 patient samples in the validation set. A positive score corresponds to classification of a sample as HNSCC; a negative score
indicates classification as LSCC. Columns, classification score for each sample; bars, confidence intervals, centered on themean and equal to 2 SDs computed over the scores
assigned by PDAwith recursive feature elimination derived from100 resamplings of the training set. Samples are arranged by source.
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important advantage of our discriminant model over the
traditional hierarchical clustering/t test approach is the
accuracy that was achieved using a small number of genes.
Our 10-gene classifier also correctly classified 96% of the
samples from the Talbot et al. study. Although as few as five
genes could be used with equal accuracy, we used the 10-gene
classifier in these studies.
A major concern in small array-based studies is the high

degree of heterogeneity that exists within a single tumor type
and whether the samples properly capture that case to case
heterogeneity. In this particular study, factors that have not
been considered include tobacco use and human papillomavi-
rus status (for the HNSCC cases). Nevertheless, gene expression
differences between the two tumor types were striking and our
10-gene classifier was evaluated with testing and validation
data sets using several different groups of external samples.
This allowed us to show that the data from University of
Pennsylvania used for model building and gene selection was
highly accurate when evaluated on these external data sets.
Most biomarker studies are done in a single institution and
usually on conservative sample numbers. If validation is done,
it is usually with split sample or 10-fold cross-validation
approaches, which, if not used carefully, can lead to bias in
gene selection and ‘‘overfitting’’ of the data (29). The possibility
of combining data sets of different origins to avoid this
problem is shown by these studies.

Analysis of specific pathways and genes. Some of the most
useful discriminating genes we detected were the lung surfactant
genes, which were significantly higher in the LSCC. This is not
surprising, given the lung epithelial origin of these tumors.
However, because the tumor samples used for the gene
expression studies were not microdissected and thus potentially
contained up to 30% nontumor tissues, a potential explanation
for this finding of high surfactant gene expression in the LSCC,
but not in HNSCC, could be contamination from normal lung
tissue in our original LSCC samples. Because of the availability of
an antisurfactant proteinCpolyclonal antibody that workedwell
in paraffin-fixed tissues, we stained some of the LSCC specimens
to determine the cellular localization of the SP-C. Our staining
studies showed strong cytoplasmic staining in LSCC tumor cells
(data not shown), demonstrating that the increased gene
expression was not simply due to contaminating lung tissues.
In addition, the 10-gene classifier, including the surfactant genes,
easily distinguished LSCC from normal adjacent lung tissue
using data available in the Memorial Sloan-Kettering Cancer
Center data set further supporting the observation that the
differential expression is tumor associated (data not shown).
Another major gene family with increased expression in lung

cancers is the GAGE (G antigen) genes. GAGE proteins are a
large group of cancer/testis antigens consisting of GAGE-1
through GAGE-8 (30). Although the function of most of the
cancer/testis antigens is not known, GAGE proteins have been
implicated in inhibition of apoptosis and chemotherapy
resistance (31, 32). GAGE protein expression is present in
f40% of lung cancers and is associated with poor prognosis
(33). Detrimental effects of GAGE expression on survival has
also been shown in esophageal and brain tumors (34, 35).
Interestingly, GAGE gene expression was up-regulated in only a
subset of LSCC (and no HNSCC). The significance of these
proteins in the pathophysiology or prognosis of these tumors is
as yet unknown.
One of the most striking changes we observed in our data set

was difference in expression of specific cytokeratin genes in

Table 3. QRT-PCR expression ratios of selected
genes

Gene QRT-PCR Penn data set SK data set

7 HNSCC-5
LSCC

18 HNSCC-10
LSCC

31 HNSCC-21
LSCC

Ratio P Ratio P Ratio P

c1orf42 +466.4 6E-2 +5.0 3E-5 NA NA
ACTA1 +462.9 3E-1 +9.9 2E-4 +7.5 2E-7
ARNTL2 +8.4 3E-2 +2.9 5E-4 NA NA
CALD1 +14.9 2E-2 +4.6 2E-4 +1.6 5E-5
CD44 +4.8 2E-1 +3.0 2E-3 +1.3 8E-3
COL6A2 +35.5 3E-2 +4.0 1E-2 -1.1 4E-1
COL6A3 +18.4 4E-2 +2.7 3E-2 +1.2 3E-1
KRT14 +188.9 1E-2 +62.3 8E-6 +29.7 1E-6
KRT16 +14.8 9E-2 +15.8 6E-5 +9.7 9E-7
KRT17 +29.0 3E-2 +10.6 9E-4 +2.3 7E-4
MMP1 +56.2 1E-2 +12.4 7E-5 +6.2 2E-6
S100A7 +357.9 2E-2 +53.6 7E-7 +35.2 8E-9
TPM2 +12.1 1E-1 +4.5 2E-4 +2.0 2E-4
TRAIL +3.7 7E-1 +4.2 3E-3 +1.9 3E-3
SCGB1A1 -113.6 3E-2 -8.8 1E-2 -1.8 2E-3
SFTPA2 -10,245.4 4E-3 -19.5 1E-3 NA NA
SFTPB -3,920.5 4E-3 -35.3 9E-4 -12.4 1E-5
SFTPC -5.0 2E-1 -6.4 1E-2 -4.5 2E-4
SFTPD -16.6 6E-2 -5.3 4E-3 -1.9 1E-4

NOTE: Comparison of the results for the P values and the ratios of
19 genes found to be differentially expressed between HNSCC and
LSCC on University of Pennsylvania data set, as validated by
microarrays on the independent set from Memorial Sloan-Ketter-
ing Cancer Center, and confirmed by QRT-PCR on a separate set of
samples. P values for QRT-PCR data were estimated by the Mann-
Whitney test.
Abbreviations: Penn, University of Pennsylvania; SK, Memorial
Sloan-Kettering Cancer Center.

Fig. 5. Ten selected ratios for five up-regulated (ARNTL2, CALD1, KRT17, MMP1,
S100A7) and two down-regulated genes (SFTPA2, SFTPB) for nine HNSCC and
seven LSCC samples using amplified RNA for QRT-PCR.The numerical values for
the ratios of two genes in the same sample are shown relative to that of the
reference Stratagene control.
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these two types of tumors. All eukaryotic cells contain a
cytoskeleton composed of three distinct filamentous structures:
microfilaments, intermediate filaments, and microtubules (36).
The intermediate filament protein family includes several
hundred different members that are divided into several
groups. Cytokeratins constitute type I and type II intermediate
filaments and are subdivided based on isoelectric point (CKs 1-
9 are acidic; CKs 10-20 are basic). Stratified squamous epithelia
express mostly CKs 1 to 6 and 9 to 17, whereas CKs 7, 8, and 18
to 20 are identified in simple epithelia (36). During malignant
transformation of normal cells, the cytokeratin patterns are
usually maintained.
The pattern of gene expression differences identified in our

study showed a ‘‘stratified squamous epithelial’’ pattern in
the HNSCC tumors with higher expression of CKs 1 and 14
(up 3.6- and 62-fold, respectively) and lower expression of
CKs 18 and 19 (down 3.9- and 10-fold, respectively). Although
both upper airway epithelium and bronchial epithelium are
composed of stratified squamous cells, it is not surprising
that HNSCC tumors are more likely to exhibit a stratified
squamous pattern given their location in the upper aerodiges-
tive tract.
Many genes in the collagen family were also up-regulated

in head and neck tumors when compared with squamous
cell lung cancer. Five collagen-related genes (COL6A2,
COL1A2, COL10A1, COL3A1 , and COL6A3) were found in
our top 100 genes selected by PDA and had expression ratios
ranging from +1.8 to +4.0. In the tumor microenvironment,
collagens are a major component of the extracellular matrix,
which is primarily secreted by stromal cells and inflammatory
cells (37). Thus, the higher expression of collagen in the
head and neck tumors may simply reflect a higher
proportion of stromal elements compared with the lung
cancer samples. There is recent data, however, that suggests
that certain collagen genes are expressed in the tumor cells
themselves. For example, ovarian cancer cells have been
shown to highly express several extracellular matrix proteins,

including collagen VI, and this was associated with resistance
to cisplatin in vitro (38).
The high expression of collagens in the head and neck

tumors was mirrored by higher levels of three matrix metal-
loproteinases, MMP1, MMP3, and MMP10, which were
increased by 12.4-, 8.2-, and 2.6-fold, respectively, when
compared with the lung cancers. MMP-1, or collagenase-1, is
expressed in a wide variety of cancers and in most cases is
associated with increased invasion and poorer survival (39).
MMP-3, which is a secreted by fibroblasts, can activate tumor-
derived MMP-1 and other collagenases leading to increased
collagen degradation and tumor invasion (39). In head and
neck tumors, high levels of MMP-1 and MMP-3 are associated
with greater tumor invasiveness and incidence of lymph node
metastases (40). The higher levels of MMP gene expression in
our study may have been due to higher proportion of HNSCC
tumors with lymph node metastases when compared with the
LSCC tumors (61% versus 20%).

Significance and future directions. Although our data was
derived from primary LSCC and HNSCC samples, we postulate
that our predictive approach will be able to determine the
origin of lung nodules in patients with previous HNSCC. We
were able to conduct a first test of this hypothesis by validating
our 10-gene classifier using data provided by Talbot et al. (12)
from a set of 12 squamous cell lung lesions of ‘‘unknown
etiology’’ derived from patients with previous HNSCC. As
shown in Fig. 6, our predictions closely matched the results of
the 500-gene classifier set of Talbot and were consistent with
the final clinical classifications of these tumors (12). How the
10-gene classifier performs in a prospective series of squamous
cell lung nodules from patients with HNSCC is the subject of
ongoing investigation.
In addition to using microarray data, we are also studying

ways to use our data in other types of assays. We have, in a
limited fashion, shown the use of gene expression ratios using
QRT-PCR to distinguish between these two tumor types. This
method, originally developed by Gordon et al., has several
potential advantages: It does not require a housekeeping gene
to be used as a reference, is independent of the platform used
for data acquisition, and requires very small amounts of RNA.
We ultimately plan to develop PCR classifiers that can be used
in paraffin-embedded tissues. Recent advances in PCR technol-
ogy allow the measurement of gene expression from RNA
harvested from paraffin-embedded tumors, which are most
commonly used for standard clinical pathology (41). We are
currently developing and testing PCR primers that will work
well in paraffin-fixed tissue and are collecting a series of well-
characterized pathologic specimens to validate this approach.
We are also evaluating potential immunohistochemical
markers, such as antisurfactant protein C antibodies using
tissue arrays. The use of antibody staining remains the most
commonly used technique in diagnostic pathology and would
be the method most easily adopted into routine clinical
practice. If protein ratios mirror the RNA ratios, this could be
a useful diagnostic approach.

Summary. The ongoing refinements in surgical therapy and
in adjuvant chemotherapy for head and neck cancer and lung
cancer make the distinction between primary LSCC and lung
metastasis increasingly important. We have identified a 10-gene
classifier that we believe can distinguish primary squamous cell
tumors of each type. This finding represents a potentially

Fig. 6. Classification scores assigned to the12 LSCC tumors and1pancreatic
lesion derived from patients with previous HNSCC described inTalbot et al. (12).
Positive scores correspond to samples classified as HNSCC and negative score
indicates classification as LSCC. Columns, scores generated by the10-gene PDA
classifier.The results were obtainedusing gene expression data for the13 samples in
the test set without any systematic bias adjustment.
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exciting new molecular diagnostic method, but will need to be
further validated before it can be used clinically. We are now
actively pursuing the use of both gene expression and
immunohistochemical methods in HNSCC patients who
present with a solitary lung nodule to further validate our
result. Because there is not yet a true ‘‘gold standard,’’ our

assessment of accuracy validation will require careful and
somewhat long-term clinical follow-up.
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